当前位置: 首页 » 师资队伍 » 教学部门 » 软件工程系 » 张润发
张润发
最终学位:博士
导师类型:硕士生导师
电子邮箱:zrf@sxu.edu.cn / rf_zhang@sina.cn
研究方向:神经网络;数学物理;符号计算;可积系统;孤立子;偏微分方程;精确解;大语言模型;人工智能;智能算法;智慧医疗;血流动力学
  • 个人简介
  • 学术论文
  • 科研项目
  • 教材与专著

张润发,博士,校聘副教授,硕士生导师,山西大学文瀛青年学者。主要从事人工智能、符号计算、数学物理等方面工作。

主持国家天元数学西北中心项目1项、省科技厅项目1项、省教育厅项目1项、山西大学人才计划项目1项、应用数学湖北省重点实验室开放基金1项。在CSF, AMC, Chao, CMA, IEEE TII, RESS, EAAI等上发表SCI检索论文40余篇,其中半数以上为JCR 1区论文,9篇全球前1% ESI高引论文,7篇全球前0.1% ESI热点论文;登记软件著作权与国家发明专利10项;担任30余期刊和会议审稿人;现任期刊Mathematics客座主编、Advances in Differential Equations and Control Processes客座主编、Optics编委、JMIM编委;曾任Paladyn副主编和ISAICS技术程序委员会委员。获2022 JSSC最佳论文奖;2023、2024年入选斯坦福大学与Elsevier联合发布的全球前2%顶尖科学家榜单。

[1] R.F. Zhang, M.C. Li, J.Y. Gan, Q. Li, Z.Z. Lan, Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method, Chaos, Solitons & Fractals, 154: 111692, 2022 (SCI Q1,中科院1区top,高被引,热点)

[2] R. F. Zhang, M. C. Li, M. Albishari, F. C. Zheng, Z. Z. Lan, Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403: 126201, 2021(SCI Q1,中科院1区top,高被引,热点)

[3] X.R. Xie, R.F. Zhang*, Neural network-based symbolic calculation approach for solving theKorteweg-de Vries equation, Chaos, Solitons & Fractals, 194:116323, 2025, doi.org/10.1016/j.chaos.2025.116232(SCI Q1,中科院1区top)

[4] C .Y. Qin, R.F. Zhang*, Y.H. Li, Various exact solutions of the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli-like equation by using bilinear neural network method, Chaos, Solitons & Fractals, 187: 115438, 2024, doi.org/10.1016/j.chaos.2024.115438. (SCI Q1,中科院1区top)

[5] Y. Zhang, R.F. Zhang*, K.V. Yuen*, Neural network-based analytical solver for Fokker–Planck equation, Engineering Applications of Artificial Intelligence, 125: 106721, 2023 (SCI Q1,中科院1区 TOP)

[6] Zhu, Yan and Huang, Chuyu and He, Shengjie and Chen, Yun and Zhong, Junjiang and Li, Junjie* and Zhang, Runfa*, Interactions of localized wave and dynamics analysis in the new generalized stochastic fractional potential-KdV equation, Chaos, 34: 113114, 2024 (SCI Q1,中科院2区)

[7] R.F. Zhang, M.C. Li, Amina Cherraf and Shashank Reddy Vadyala. The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn., 111(9): 8637-8646, 2023 (SCI Q1,中科院2区 top,高被引,热点)

[8] R. F. Zhang, M. C. Li, Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108(1): 521-531, 2022 (SCI Q1,中科院2区top,高被引,热点)

[9] R. F. Zhang, M. C. Li, H. M. Yin, Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation, Nonlinear Dyn. 103(1): 1071–1079, 2021 (SCI Q1,中科院2区top,高被引,热点)

[10] R. F. Zhang, S. D. Bilige, Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p–gBKP equation, Nonlinear Dyn. 95: 3041–3048, 2019. (SCI Q1,中科院2区top,高被引)

[11] R.F. Zhang, S.D. Bilige, T. Fang, T. Chaolu. New periodic wave, cross-kink wave and the interaction phenomenon for the Jimbo-Miwa-like equation. Comput. Math. Appl. 78: 754-764, 2019 (SCI Q1,中科院2区)

[12] N. Xia, R.F. Zhang*, X.F. Luo*, Three types of exact solutions of generalized breaking soliton equation via certain neural network structures, Nonlinear Dyn. 112 (8): 6587-6596, 2024 (SCI Q1,中科院2区top)

[13] C. Huang, Y. Zhu, K. Li, J. Li*, R.F. Zhang*, M-lump solutions, lump-breather solutions, and N-soliton wave solutions for the KP-BBM equation via the improved bilinear neural network method using innovative composite functions. Nonlinear Dyn. 112:21355–21368 2024 (SCI Q1,中科院2区top)

[14] Y. Zhu, C. Huang, J. Li*, R.F. Zhang*, Lump solitions, fractal soliton solutions, superposed periodic wave solutions and bright-dark soliton solutions of the generalized (3+1)-dimensional KP equation via BNNM. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09911-2(SCI Q1,中科院2区top)

[15] R.F. Zhang, S.D. Bilige, J.G. Liu, M. C. Li. Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96: 055224, 2020 (SCI Q2,中科院3区,高被引,热点)

[16] R.F. Zhang, S.D. Bilige. T. Chaolu, Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. Journal of Systems Science and Complexity, 43: 122-139, 2021 (SCI Q2 中科院3区,高被引,热点)

[17] J.M. Qiao, R.F. Zhang*, R.X. Yue*, H. Rezazadeh, A.R. Seadawy. Three types of periodic solutions of new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation via bilinear neural network method. Mathematical Methods in The Applied Sciences. 45 (9): 5612-5621, 2022 (SCI Q1,中科院3区,高被引)

[18] Q. Li, M.C. Li, Z.Q. Gong, Y.Tian, R.F. Zhang. Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers. Reliability Engineering and System Safety. 223: 108440, 2022 (SCI Q1,中科院1区top)

[19] Q. Li, M.C. Li, R.F. Zhang, J. Gan. A stochastic bilevel model for facility location-protection problem with the most likely interdiction strategy. Reliability Engineering and System Safety. 216: 108005, 2021 (SCI Q1,中科院1区top)

[20] J. Gan, M. Li, Q. Li, R.F. Zhang, X. Zheng, IUAV Path Planning Using a Multiobjective Projection Algorithm," in IEEE Transactions on Industrial Informatics, doi: 10.1109/TII.2024.3431080. (SCI Q1,中科院1区top)


[1] 国家天元数学西北中心项目, 12426105, 融合人工智能的科学计算新理论与方法,2025.01-2025.12,5万元,主持,在研;

[2] 山西省科技厅,青年基金, 202403021222001,面向非线性偏微分方程精确求解的KAN模型符号计算方法及其应用研究,2024.07-2027.07,5万元,主持, 在研;

[3] 山西省教育厅,山西省高等学校科技创新项目,2024L022,基于偏微分方程符号数值混合计算的血流动力学研究,2024.08-2026.07,2万元,主持,在研;

[4] 应用数学湖北省重点实验室(湖北大学)开放基金,HBAM202401,符号计算驱动的神经网络架构设计与优化,2025.02-2027.01,2万元,主持,在研;

[5] 山西大学“文瀛青年学者”人才项目,138541088,神经网络符号计算技术及其在冠状动脉粥样硬化血液非线性波中的研究, 2024.07-2027.07,45万,主持,在研;

[6]国家自然科学基金外国资深学者基金项目,T2350710232,面向6G网络大数据时代的边缘计算中的服务与数据调度机制研究,2024.01-2024.12,80万元,参与,结题;

[7]国家自然科学基金地区项目,12061054,双线性神经网络方法和非线性波的研究,2021-2024,32万元,参与,结题;[8]内蒙古自治区自然科学基金,对称方法在非线性边值问题中的应用及高维非线性发展方程的Lump解和反应解的研究,2018.1-2020.12,3万,参与,结题。

[1] 2019R11L1426254 具有筛选神经网络模型功能的求解器软件 (简称FaSolve) V1.0;

[2] 2019R11L1412887 用于构造神经网络函数的Maple软件 (简称Neural F) V1.0;

[3] 2020R11L016872 具有约束条件挑选功能的Maple软件 (简称R Pick) V1.0.

[4] 2021SR0133755 具有行波变换自动推导功能的Maple软件(简称 P_Transformation) V1.0

[5] 2021SR0501538 具有三次样条函数求解方程功能的Python软件(简称 Cs_FSolve) V1.0

[6] 2021SR1917459 非线性多项式方程组的数值求解器Maple软件(简称: NLEs_Solve) V1.0

[7] 2022R11L0596045 基于梯度下降的优化算法的 Maple软件 (简称Optimization) V1.0

[8] 2023SR0398665 基于傅里叶神经网络的求解器Maple软件 (简称  Fourier_NN) V1.0